Modelling the supply of informal work

a microeconometric approach

David Rodríguez Guerrero

ISER
University of Essex

david.rodriguez@essex.ac.uk

Motivation

- With more than half the workforce in the informal sector in Latin-American economies, understanding the nature of informality is critical
- If markets are segmented (i.e there are significant barriers to become formal) distortions in the formal sector are indeed large and the need for reform is compelling
- If informal workers' dynamics are similar to the formal sector, the focus shifts towards the cost-benefit analysis agents undertake choosing among sectors

Earnings distribution of formal and informal employees (2014)

*minimum wage vertical dotted line Source: Author's calculations

- To what extent barriers to enter the formal sector affect labour supply and sector choice?
- What would be the sectoral choice responses of informal workers to exogenous changes in tax-benefit system rules or education level?

Literature Review

- Informality Choice
- Macroeconomic and Growth models with two sectors
- Raush (1991), Loayza (1996), Amaral and Quintin (2006), Loayza and Rigolini (2011), De Paula and Scheinkman (2011), Galiani and Weinschelbaum (2012)
- Search and Matching Models
- Zenou (2008), Albrecht, Navarro and Vroman (2009), Bosch and Maloney (2010)
- Labour supply with informality
- Too few microeconometric studies
- Pradhan and Van Soest (1997) Labour supply and sector choice of two spouses households in Bolivia (ordered vs multinomial models)
- Gong, Van Soest and Villagomez (2004) study formality, informality or non-participation choice in Mexico with a dynamic multinomial logit panel data model

Current labour supply models

Following Aaberge and Colombino (2014) modern labour supply models can be classified in two groups:

- Discrete Choice Models (DC)
- Random Utility-Random Opportunity (RURO)

Discrete Choice Model (DC) aka Van Soest model (VS)

- Choice set of hours of worked consists of only k discrete alternatives $\mathrm{L}_{\mathrm{i}} \in[0, \mathrm{~T}] \forall \mathrm{i}=1,2, \ldots \mathrm{k}$
- Stochastic utility function over only one Consumption good (disposable income) and Leisure

$$
\mathrm{U}_{\mathrm{i}}=\mathrm{V}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{~T}-\mathrm{L}_{\mathrm{i}} \mid \mathrm{X}\right)+\varepsilon_{\mathrm{i}}
$$

- X Individual measured characteristics such as age, gender, education or number of kids etc., that could directly affect preferences or indirectly affect disposable income (through tax and benefit rules)
- Function $\mathrm{f}($.$) translates each element in the discrete set of$ hours worked into disposable income for that choice, by adding benefits and subtracting taxes and social insurance (TB) from labour (wL_{i}) and non-labour ($\overline{\mathrm{Y}}_{\mathrm{i}}$) original income

$$
Y_{i}=C_{i}=f\left(L_{i} \mid X\right)=w L_{i}+\bar{Y}_{i}+T B\left(w L_{i}+\bar{Y}_{i} \mid X\right)
$$

- Calculated with tax-benefit microsimulation models
- Assuming ε_{i} is an error term with an Extreme value distribution the individual likelihood takes the multinomial logit form (L_{i} observed choice):

$$
p_{i}\left(L_{i} \mid X\right)=\frac{e^{v\left(L_{i} \mid X\right)}}{\sum_{j=1}^{k} e^{v\left(L_{j} \mid X\right)}}
$$

- For non-workers wages are imputed
- For couples a unitary decision household is usually assumed, utility depends on individual labour supply but household disposable income
- The model may require some fixed utility costs of working to improve fit (Van Soest,1995)

Random Utility-Random Opportunity Models (RURO)

- Intuition 1: Wages are not fixed but part of the job offer alongside the time regime.
- Intuition 2: Utilities are weighted with the intensity with which job offers are made available to each agent
- Each job offer is a bundle consisting of working time to be supplied $\left(\mathrm{L}_{\mathrm{i}}\right)$ and a wage to be paid by the employer $\left(\mathrm{w}_{\mathrm{i}}\right)$.
- Each non-market activity is assumed to offer a wage $\mathrm{w}_{\mathrm{i}}=0$ and to require no hours of work $\mathrm{L}_{\mathrm{i}}=0$
- The arrival of job offers depends on personal characteristics, labour demand conditions, the wage and time regime the job offer stipulates.
- Arrival modelled by a Poisson process with intensity parameter given by

$$
\lambda_{1}\left(\varepsilon_{i}, q\right) g_{1}\left(w_{i}\right) g_{2}\left(L_{i}\right)
$$

- The opportunities function λ_{1} captures labour demand conditions given by $q=\exp \left(\beta_{q} X_{q}\right)$
- g_{1} is the density (lognormal) of jobs paying wages w_{i} which is assumed to depend on some covariates.
- g_{2} is the density (assumed piecemeal uniform with peaks in the most frequently observed time regimes) of jobs requiring L_{i} hours of work
- The resulting probability that the chosen time regime L_{i} and wage w_{i} are the observed for individual i observed working is given by

$$
p_{i}\left(w_{i}, L_{i}\right)=\frac{q g_{1}\left(w_{i}\right) g_{2}\left(L_{i}\right) e^{V\left(w_{i}, L_{i}\right)}}{e^{V(0,0)}+\int_{w_{i} \in W} \int_{L_{k} \in \mathbb{E}} q g_{1}\left(w_{j}\right) g_{2}\left(L_{k}\right) e^{v\left(w_{j} L_{k}\right)} d L_{k} d w_{j}}
$$

For non participation

$$
p_{i}(0,0)=\frac{e^{V(0,0)}}{e^{V(0,0)}+\int_{w_{j} \in W} \int_{L_{k} \in \mathbb{I}} q g_{1}\left(w_{j}\right) g_{2}\left(L_{k}\right) e^{v\left(w_{j} L_{k}\right)} d L_{k} d w_{j}}
$$

Where \mathbb{W} and \mathbb{H} are the sets of wage offers and hours supplied respectively which are not observed (Decoster et al., 2016)

Labour supply of informal work

- We extend RURO to take into account sectoral choice assuming that job offer intensities, and wage and hour densities are different for informal and formal workers.
- The resulting individual likelihood is given by

$$
q_{z} g_{1 \mathrm{k}}\left(w_{i}\right) g_{2 k}\left(L_{i}\right) e^{V\left(w_{i}, L_{i}, z_{i}\right)}
$$

$p_{i}\left(w_{i}, L_{i}, z_{i}\right)=$

$$
e^{V(0,0,0)}+\sum_{k=0}^{1} \int_{w_{j} \in \mathbb{W}} \int_{L_{k} \in \mathbb{H}} q_{z} g_{1 z}\left(w_{j}\right) g_{2 z}\left(L_{k}\right) e^{V\left(w_{j}, L_{k}, z_{i}\right)} d L_{k} d w_{j}
$$

For non participation

$$
\mathrm{e}^{\mathrm{V}(0,0,0)}
$$

$$
\mathrm{p}_{\mathrm{i}}(0,0,0)=
$$

$$
e^{V(0,0,0)}+\sum_{k=0}^{1} \int_{w_{j} \in \mathbb{W}} \int_{L_{k} \in \mathbb{H}} q_{z} g_{1 z}\left(w_{j}\right) g_{2 z}\left(L_{k}\right) e^{V\left(w_{j}, L_{k}, z_{i}\right)} d L_{k} d w_{j}
$$

To estimate the model we drawn from a priory density functions. The simulated likelihood for the observed time regime L_{i} and wage w_{i} is

$$
\frac{\mathbb{P}(0,0,0)}{\mathbb{P}\left(w_{i}, L_{i}, z_{i}\right)} q_{z} g_{1 z}\left(w_{i}\right) g_{2 z}\left(L_{i}\right) e^{v\left(w_{i}, L_{i}, z_{i}\right)}
$$

$\mathrm{p}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{L}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)=$

$$
\mathrm{e}^{\mathrm{v}(0,0,0)}+\sum_{w_{j}, L_{k} z_{\mathrm{k}} \in \mathbb{D}} \frac{\mathbb{P}(0,0,0)}{\mathbb{P}\left(w_{j}, L_{k}, z_{n}\right)} q_{n} g_{1 n}\left(w_{j}\right) g_{2 n}\left(L_{k}\right) e^{v\left(w_{j}, L_{k}, z_{n}\right)}
$$

For non participation

$$
\mathrm{e}^{\mathrm{V}(0,0,0)}
$$

$p_{i}\left(w_{i}, L_{i}, z_{i}\right)=$

$$
e^{\mathrm{v}(0,0,0)}+\sum_{w_{j}, L_{k} z_{n} \in \mathbb{D}} \frac{\mathbb{P}(0,0,0)}{\mathbb{P}\left(w_{j}, L_{k}, z_{n}\right)} q_{n} g_{1 n}\left(w_{j}\right) g_{2 n}\left(L_{k}\right) e^{v\left(w_{j}, L_{k}, z_{n}\right)}
$$

The probability of a job offer being drawn is included in the model $\left(\frac{\mathbb{P}(0,0,0)}{\mathbb{P}\left(w_{;} \mathrm{L}_{\mathrm{k}}, \mathrm{z}_{\mathrm{i}}\right)}\right)$ and the observed choice must be included in the \mathbb{D} subset (Train, 2009).

- For the three models the systematic part of the utility function is of the Box-Cox type

$$
\mathrm{V}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{~T}-\mathrm{L}_{\mathrm{i}} \mid \mathrm{X}\right)=\mathrm{V}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{~L}_{\mathrm{i}}\right)=\left(\beta_{\mathrm{H}}^{\prime} \mathrm{X}_{\mathrm{H}}\right)\left(\frac{\left(\frac{\left.\mathrm{T}-\mathrm{L}_{\mathrm{i}}\right)^{\alpha_{H}}}{\mathrm{~T}}-1\right.}{\alpha_{\mathrm{H}}}\right)+\left(\beta_{\mathrm{Y}}^{\prime} \mathrm{X}_{\mathrm{Y}}\right)\left(\frac{\mathrm{Y}_{\mathrm{i}}{ }^{\alpha_{\mathrm{X}}-1}}{\alpha_{\mathrm{Y}}}\right)
$$

- X_{H} and X_{Y} are a vector of parameters that shift the intensity of preference for leisure and income
- α_{H} and $\alpha_{Y}<1$ determine the curvature of the indifference curves
- lower values imply less substitutability between leisure and income.
- Hours density piecemeal uniform (Only for RURO type)

- Quality of Life National Survey (ENCV)
- Income and Expenditure Household Survey for Colombia 2014
- Cross Section
- 67.332 observations
- We focus on singles aged 18-60 years, not in education or disabled and in urban areas
- They must be living without other working age family members
- They are either working as employees (formal or informal) or not working i.e self-employed are excluded
- If working, they report only one job
- 697 observations

Results

Preferences

RURO and VS Indifference Curves for:CO

	VS			RURO		RURO_OC	
	Variable	coef.	t-value	coef.	t-value	coef.	t-value
	leisureXconst	5.49	0.38	4.48	0.27	0.21	0.18
leisure_male	-0.50	-1.94	-0.68	-1.76	-0.01	-0.47	
leisure_age	-2.56	-0.31	-2.28	-0.24	-0.16	-0.23	
leisure_age2	0.48	0.42	0.46	0.34	0.03	0.33	
¿ leisure_child02	0.23	0.43	0.64	1.03	0.13	0.92	
leisure_child34	-0.31	-0.70	-0.45	-0.91	0.01	0.18	
leisure_child512	0.55	1.67	0.25	0.66	0.09	1.29	
alfa_leisure	-2.17	-6.48	-1.67	-2.92	-5.41	-5.04	
incomeXconst	2.30	10.96	1.07	5.48	0.00	0.21	
alfa_income	-0.36	-6.04	-0.29	-3.36	-3.19	-1.85	
fcXconst	42.94	1.97					
fcXchild02	0.69	1.43					
fcXage	-23.33	-1.93				Sour	
fcXage2	3.29	1.96					

Source: Author's calculations

Wages

	Variable	vs		RURO		RURO_OC	
		coef.	t-value	coef.	t-value	coef.	t-value
㐫	w_const			6.71	40.41		
	w_exp			3.17	2.54		
	w_exp2			-5.50	-2.20		
	w_eduhigh			1.01	11.44		
	w_male			-0.02	-0.21		
	w_capital			0.37	3.44		
	w_socsec			0.52	6.14		
	rmse			0.74	26.56		
	w0_const					7.31	36.77
	w0_exp					2.06	1.17
	w0_exp2					-3.44	-1.03
	w0_eduhigh					1.18	6.65
	w0_male					0.25	2.23
	w0_capital					0.57	2.89
	rmse0					0.77	19.52
$\begin{aligned} & \bar{\sigma} \\ & \tilde{H}_{0}^{0} \end{aligned}$	w1_const					7.82	45.85
	w1_exp					4.14	2.69
	w1_exp2					-7.51	-2.30
	w1_eduhigh					0.77	9.30
	w1_male					-0.17	-2.08
	w1_capital					0.16	1.52
	rmse1					0.65	23.56

Source: Author's calculations

Source: Author's calculations

Opportunities

	Variable	VS		RURO		RURO_OC	
		coef.	t-value	coef.	t-value	coef.	t-value
$\overline{\text { ¢ }}$	opp_const			-24.24	-1.13		
	opp_age			10.98	0.91		
	opp_age2			-1.64	-0.98		
	opp_eduhigh			0.53	0.92		
	opp_formrate			0.89	0.86		
	opp_male			-0.61	-1.56		
	opp0_const					-41.04	-2.48
	opp0_age					21.57	2.32
	opp0_age2					-3.21	-2.47
	opp0_eduhigh					-0.22	-0.71
	opp0_male					0.69	2.56
$\begin{aligned} & \overline{0} \\ & \text { ED } \\ & \text { 은 } \end{aligned}$	opp1_const					-84.70	-4.78
	opp1_age					43.43	4.40
	opp1_age2					-6.06	-4.43
	opp1_eduhigh					0.17	0.47
	opp1_form					4.68	6.88
	opp1_male					1.02	3.95

Source: Author's calculations

Hours

	Variable	VS		RURO		RURO OC	
		coef.	t-value	coef.	t-value	coef.	t-value
$\overline{\text { ¢ }}$	hours_peak1 (40 h/w)			2.64	16.65		
	hours_peak2 (48 h/w)			3.65	31.72		
	hours_peak3 (60 h/w)			2.01	9.48		
$\begin{aligned} & \bar{\sigma} \\ & \text { E } \\ & \text { © } \\ & \text { 드N } \end{aligned}$	hours0_peak1 (40 h/w)					2.16	7.96
	hours0_peak2 (48 h/w)					3.15	16.23
	hours0_peak3 (60 h/w)					2.02	6.66
	hours1_peak1 (40 h/w)					3.33	17.01
	hours1_peak2 (48 h/w)					4.60	31.93
	hours1_peak3 (60 h/w)					2.48	8.76

Source: Author's calculations

Sector Choice

Simulation

- Simulation1: We increase the observed education of informal workers aged 18-40 years to the highest level resulting in informal workers with HE $10 \% \rightarrow 70 \%$
- Increases opportunities, wages and incomes
- Simulation2: We eliminate social insurance contributions for formal workers earning less than 3 monthly minimum wages
- Increases disposable incomes in the formal sector

Source: Author's calculations

- Opportunities B and S1

Source: Author's calculations

RURO-OC Sector Change for Colombia

	Simulation 1				Simulation 2			
		Not Working	Informal	Formal		Not Working	Informal	Formal
	Not Working	0.994	0.000	0.006	OLS	1.000	0.000	0.000
¢	Informal	0.000	0.961	0.039	Informal	0.000	1.000	0.000
¢	Formal	0.000	0.016	0.984	Formal	0.000	0.000	1.000

Source: Author's calculations

Conclusions

- Very limited sector movement after important exogenous changes. This result favours the hypothesis of labour market segmentation
- Unobservables determine a great deal of opportunities for informal workers in the formal sector
- Explore alternative determinants of opportunities
- Explore alternative dataset with more observations
- Calibrate a micro-founded macroeconomic model to better capture the interactions between supply and demand of formal and informal labour

